德國賽諾(sera)公司位于德國黑森州的伊門豪森,成立于1945年.在德國國內(nèi)有12家分公司,在世界各地30多個國家設(shè)有代理或代表處。產(chǎn)品有氣動隔膜泵、電磁隔膜泵、機(jī)械隔膜泵、活塞隔膜泵、加藥裝置及隔膜壓縮機(jī)。 多樣化的設(shè)計可解決各種計量技術(shù)上的問題。這充分體現(xiàn)于sera根據(jù)客戶的技術(shù)要求所提供的各種不同的泵和加藥系統(tǒng)的設(shè)計上。產(chǎn)品滿足經(jīng)濟(jì)性需要,且符合環(huán)保要求。
德國Sera(賽諾)計量泵
.運(yùn)作時高度安全,計量精確,化學(xué)藥品在使用過程中的經(jīng)濟(jì)性和環(huán)保.針對介質(zhì)接觸表面的特性選擇高質(zhì)量的材料,泵的使用壽命.多樣化的設(shè)計可解決各種計量技術(shù)上的問題.這充分體現(xiàn)于Sera根據(jù)客戶的技術(shù)要求所提供的各種不同的泵和加藥系統(tǒng)的設(shè)計上.Sera的產(chǎn)品滿足經(jīng)濟(jì)性需要,且符合環(huán)保要求
陳曉 壹叁捌柒壹壹捌貳捌玖叁
我司專業(yè)銷售工程機(jī)械(混凝土機(jī)械、路橋、路面機(jī)械)、工業(yè)設(shè)備、冶金機(jī)械、大型礦山機(jī)械、陶瓷、船舶等液壓泵、馬達(dá)、各種減速機(jī)總成及零配件并維修,大小型設(shè)備液壓系統(tǒng)設(shè)計、生產(chǎn)改造及維修,引進(jìn)國外技術(shù)人才,并備有進(jìn)口液壓系統(tǒng)測試臺,能針對各種疑難雜癥進(jìn)行調(diào)試修復(fù),并代理銷售力士樂、薩澳、川崎原裝進(jìn)口液壓泵、馬達(dá)及零配件,品種齊全,質(zhì)優(yōu)物廉。
德國進(jìn)口軸承HCS71902C.T.P4S.UL進(jìn)口軸承 CC5——圓柱滾子軸承(不可互換)徑向游隙,比CC4游隙大。MC1——小型,微型球軸承徑向游隙,比MC2游隙小。MC2——小型,微型球軸承徑向游隙,比MC3游隙小。MC3——小型,微型球軸承徑向游隙標(biāo)準(zhǔn)游隙。
IKO CRB13025T1IKO CRB14025T1IKO CRB15025T1IKO CRB15030T1IKO CRB20025T1IKO CRB20030T1IKO CRB25025T1IKO CRB25030T1IKO CRB25040T1IKO CRB30025T1IKO CRB30035T1IKO CRB30040T1IKO CRB40035T1IKO CRB40040T1
(以上進(jìn)口軸承分類及品牌型號代碼說明信息由蘇州然康機(jī)電貿(mào)易有限公司提供)
蘇州然康機(jī)電專業(yè)經(jīng)銷世界進(jìn)口品牌軸承,瑞典SKF進(jìn)口軸承,日本NSK進(jìn)口軸承,日本NTN進(jìn)口軸承,美國TIMKEN進(jìn)口軸承,日本IKO進(jìn)口軸承,日本KOYO進(jìn)口軸承,日本THK進(jìn)口軸承,德國FAG進(jìn)口軸承,日本 NACHI進(jìn)口軸承,美國MCGILL進(jìn)口軸承,德國INA進(jìn)口軸承,美國BOSDON進(jìn)口軸承,日本FHY進(jìn)口軸承,日本ASAHI進(jìn)口軸承,英國RHP進(jìn)口軸承等國際進(jìn)口品牌軸承,同時我們也經(jīng)營哈爾濱軸軸承(HRB軸承),瓦房店軸承(ZWZ軸承),洛陽軸承(LYC軸承)等國產(chǎn)軸承。
以上材料由蘇州然康機(jī)電貿(mào)易有限公司特別提供
公司服務(wù)理念:品質(zhì),誠信每一,服務(wù)。
我們用心,客戶放心,大家安心。
單個細(xì)胞加力模式如下圖:由兩束細(xì)胞無損激光夾持細(xì)胞進(jìn)行牽拉或擠壓,進(jìn)而使單個細(xì)胞受到牽張拉伸或壓縮力刺激。
系統(tǒng)亮點(diǎn)特性:
1 )可大量表征單細(xì)胞機(jī)械力特性、操作簡便、樣品消耗量小 該系統(tǒng)的微流控芯片具有與細(xì)胞直徑良好相符性的微納米級腔道,并能實現(xiàn)對微流體的精確控制,使其尤其適合單細(xì)胞機(jī)械特性研究分析,該微流控的高通量技術(shù)便于大量表征單細(xì)胞機(jī)械力特性、操作簡便、樣品消耗量小、集成和微型化程度高等優(yōu)點(diǎn),且在分析過程中單細(xì)胞懸浮高速流經(jīng)檢測區(qū)域,該連續(xù)流動態(tài)檢測的特性極大提高了系統(tǒng)的通量。 2)高速對單個細(xì)胞進(jìn)行形變,并進(jìn)行機(jī)械特性高速表征,單細(xì)胞高通量流變 利用兩素未聚焦光進(jìn)行單細(xì)胞形變,并通過圖形化微柱基地表征細(xì)胞的力特性,高速有效分析單細(xì)胞水平的機(jī)械特性, 高達(dá)300個細(xì)胞/小時. 3)非機(jī)械接觸、無標(biāo)記進(jìn)行細(xì)胞捕捉和拉伸,確保細(xì)胞安全與細(xì)胞損傷***小化(Contact-free cell deformation)利用光延伸器技術(shù)測試細(xì)胞機(jī)械特性能時,在非機(jī)械接觸情況下細(xì)胞進(jìn)行捕捉和拉伸,且不需要對激光進(jìn)行聚焦,能實現(xiàn)細(xì)胞損傷***小化。優(yōu)于AFM(原子力顯微鏡)和光鑷 4)將光延伸器安全性與微流控高通量完美相結(jié)合,細(xì)胞機(jī)械特性測試分析安全而且高效 采用2個微流道來輸送細(xì)胞,使兩條光纖垂直分布于通道兩側(cè)并嚴(yán)格對準(zhǔn)? ,單細(xì)胞隨流體進(jìn)入檢測區(qū)域時,首先采用功率較低的光速捕獲細(xì)胞,然后增加光速的功率使細(xì)胞發(fā)生形變。通過對細(xì)胞變形能力的分析,不僅能區(qū)分病變細(xì)胞和正常細(xì)胞,而且可以用于辨別轉(zhuǎn)型特性和非轉(zhuǎn)移特性的癌細(xì)胞。 5)自動化測量單細(xì)胞力屬性和成像記錄細(xì)胞形變記錄 對應(yīng)于用戶定義的拉伸模式,細(xì)胞被自動傳送到測量區(qū)域由CellStretcher模塊控制所有組件和自動測量細(xì)胞;細(xì)胞形變由系統(tǒng)CCD相機(jī)自動記錄,并由CellEvaluator自動提取記錄顯微圖像形變數(shù)據(jù),CellReporter可視化統(tǒng)計分析表征參數(shù)。在光學(xué)拉伸加載運(yùn)行實驗中,科研學(xué)者可專注于闡述實驗結(jié)果 6)良好溫控微環(huán)境罩
中國代理服務(wù)商:北京思睿維科技有限公司 馬金龍 18601970048
Publications
RS ZELLTECHNIK BROCHURES
The Optical Stretcher
OPTICAL STRETCHER TECHNOLOGY
Lincoln, B., Schinkinger, S., Travis, K., Wottawah, F., Ebert, S., Sauer, F., Guck, J., 2007. Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications. Biomed. Microdevices 9, 703–710. doi:10.1007/s10544-007-9079-xEbert, S., Travis, K., Lincoln, B., Guck, J., 2007. Fluorescence ratio thermometry in a microfluidic dual-beam laser trap. Opt. Express 15, 15493–15499. doi:10.1364/OE.15.015493Jensen-McMullin, C., Lee, H.P., Lyons, E.R.L., 2005. Demonstration of trapping, motion control, sensing and fluorescence detection of polystyrene beads in a multi-fiber optical trap. Opt. Express 13, 2634–2642. doi:10.1364/OPEX.13.002634Wottawah, F., Schinkinger, S., Lincoln, B., Ananthakrishnan, R., Romeyke, M., Guck, J., K?s, J., 2005. Optical Rheology of Biological Cells. Phys. Rev. Lett. 94, 098103. doi:10.1103/PhysRevLett.94.098103Lincoln, B., Erickson, H.M., Schinkinger, S., Wottawah, F., Mitchell, D., Ulvick, S., Bilby, C., Guck, J., 2004. Deformability-based flow cytometry.Cytometry A 59A, 203–209. doi:10.1002/cyto.a.20050
THEORETICAL MODELS
Ananthakrishnan, R., Guck, J., Wottawah, F., Schinkinger, S., Lincoln, B., Romeyke, M., Kas, J., 2005. Modelling the structural response of an eukaryotic cell in the optical stretcher. Curr. Sci. 88.B. Bareil, P., Sheng, Y., Chiou, A., 2006. Local scattering stress distribution on surface of a spherical cell in optical stretcher. Opt. Express 14, 12503–12509. doi:10.1364/OE.14.012503 Bareil, P.B., Sheng, Y., Chen, Y.-Q., Chiou, A., 2007. Calculation of spherical red blood cell deformation in a dual-beam optical stretcher. Opt. Express 15, 16029–16034. doi:10.1364/OE.15.016029 Boyde, L., Ekpenyong, A., Whyte, G., Guck, J., 2012. Comparison of stresses on homogeneous spheroids in the optical stretcher computed with geometrical optics and generalized Lorenz–Mie theory. Appl. Opt. 51, 7934–7944. doi:10.1364/AO.51.007934Ekpenyong, A.E., Posey, C.L., Chaput, J.L., Burkart, A.K., Marquardt, M.M., Smith, T.J., Nichols, M.G., 2009. Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher. Appl. Opt. 48, 6344–6354. doi:10.1364/AO.48.006344Teo, S.-K., Goryachev, A.B., Parker, K.H., Chiam, K.-H., 2010. Cellular deformation and intracellular stress propagation during optical stretching.Phys. Rev. E 81, 051924. doi:10.1103/PhysRevE.81.051924
CANCER RESEARCH AND DIAGNOSTICS
Kastl, L., Budde, B., Isbach, M., Rommel, C., Kemper, B., Schnekenburger, J., 2015. Optomechanical properties of cancer cells revealed by light-induced deformation and quantitative phase microscopy. pp. 952908–952908–6. doi:10.1117/12.2184764Martin, M., Müller, K., Cadenas, C., Hermes, M., Zink, M., Hengstler, J.G., K?s, J.A., 2012. ERBB2 overexpression triggers transient high mechanoactivity of breast tumor cells. Cytoskeleton 69, 267–277. doi:10.1002/cm.21023Fritsch, A., H?ckel, M., Kiessling, T., Nnetu, K.D., Wetzel, F., Zink, M., K?s, J.A., 2010. Are biomechanical changes necessary for tumour progression? Nat. Phys. 6, 730–732. doi:10.1038/nphys1800Brunner, C., Niendorf, A., K?s, J.A., 2009. Passive and active single-cell biomechanics: a new perspective in cancer diagnosis. Soft Matter 5, 2171–2178. doi:10.1039/B807545JRemmerbach, T.W., Wottawah, F., Dietrich, J., Lincoln, B., Wittekind, C., Guck, J., 2009. Oral Cancer Diagnosis by Mechanical Phenotyping. Cancer Res. 69, 1728–1732. doi:10.1158/0008-5472.CAN-08-4073Martin, M., Mueller, K., Wottawah, F., Schinkinger, S., Lincoln, B., Romeyke, M., K?s, J.A., 2006. Feeling with light for cancer. p. 60800P–60800P–10. doi:10.1117/12.637899Guck, J., Schinkinger, S., Lincoln, B., Wottawah, F., Ebert, S., Romeyke, M., Lenz, D., Erickson, H.M., Ananthakrishnan, R., Mitchell, D., K?s, J., Ulvick, S., Bilby, C., 2005. Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence. Biophys. J. 88, 3689–3698. doi:10.1529/biophysj.104.045476
STEM CELL RESEARCH
Ekpenyong, A.E., Whyte, G., Chalut, K., Pagliara, S., Lautenschlaeger, F., Fiddler, C., Paschke, S., Keyser, U.F., Chilvers, E.R., Guck, J., 2012.Viscoelastic Properties of Differentiating Blood Cells Are Fate- and Function-Dependent. Plos One 7, e45237. doi:10.1371/journal.pone.0045237Galle, J., Bader, A., Hepp, P., Grill, W., Fuchs, B., Kas, J.A., Krinner, A., MarquaB, B., Muller, K., Schiller, J., Schulz, R.M., von Buttlar, M., von der Burg, E., Zscharnack, M., Loffler, M., 2010. Mesenchymal Stem Cells in Cartilage Repair: State of the Art and Methods to monitor Cell Growth, Differentiation and Cartilage Regeneration. Curr. Med. Chem. 17, 2274–2291. doi:10.2174/092986710791331095Maloney, J.M., Nikova, D., Lautenschlager, F., Clarke, E., Langer, R., Guck, J., Van Vliet, K.J., 2010. Mesenchymal Stem Cell Mechanics from the Attached to the Suspended State. Biophys. J. 99, 2479–2487. doi:10.1016/j.bpj.2010.08.052Lautenschl?ger, F., Paschke, S., Schinkinger, S., Bruel, A., Beil, M., Guck, J., 2009. The regulatory role of cell mechanics for migration of differentiating myeloid cells. Proc. Natl. Acad. Sci. 106, 15696–15701 doi:10.1073/pnas.0811261106
IMMUNE SYSTEM
Man, S.M., Ekpenyong, A., Tourlomousis, P., Achouri, S., Cammarota, E., Hughes, K., Rizzo, A., Ng, G., Wright, J.A., Cicuta, P., Guck, J.R., Bryant, C.E., 2014. Actin polymerization as a key innate immune effector mechanism to control Salmonella infection. Proc. Natl. Acad. Sci. 201419925 doi:10.1073/pnas.1419925111
BASIC RESEARCH
Schmidt, B.U.S., Kie?ling, T.R., Warmt, E., Fritsch, A.W., Stange, R., K?s, J.A., 2015. Complex thermorheology of living cells. New J. Phys. 17, 073010. doi:10.1088/1367-2630/17/7/073010Chan, C.J., Ekpenyong, A.E., Golfier, S., Li, W., Chalut, K.J., Otto, O., Elgeti, J., Guck, J., Lautenschl?ger, F., 2015. Myosin II Activity Softens Cells in Suspension. Biophys. J. 108, 1856–1869. doi:10.1016/j.bpj.2015.03.009Gladilin, E., Gonzalez, P., Eils, R., 2014. Dissecting the contribution of actin and vimentin intermediate filaments to mechanical phenotype of suspended cells using high-throughput deformability measurements and computational modeling. J. Biomech. 47, 2598–2605. doi:10.1016/j.jbiomech.2014.05.020Maloney, J.M., Vliet, K.J.V., 2014. Chemoenvironmental modulators of fluidity in the suspended biological cell. Soft Matter. doi:10.1039/C4SM00743CWarmt, E., Kie?ling, T.R., Stange, R., Fritsch, A.W., Zink, M., K?s, J.A., 2014. Thermal instability of cell nuclei. New J. Phys. 16, 073009. doi:10.1088/1367-2630/16/7/073009Gyger, M., Stange, R., Kiessling, T.R., Fritsch, A., Kostelnik, K.B., Beck-Sickinger, A.G., Zink, M., Kaes, J.A., 2014. Active contractions in single suspended epithelial cells. Eur. Biophys. J. Biophys. Lett. 43, 11–23. doi:10.1007/s00249-013-0935-8Seltmann, K., Fritsch, A.W., K?s, J.A., Magin, T.M., 2013. Keratins significantly contribute to cell stiffness and impact invasive behavior. Proc. Natl. Acad. Sci. 201310493. doi:10.1073/pnas.1310493110Maloney, J.M., Lehnhardt, E., Long, A.F., Van Vliet, K.J., 2013. Mechanical fluidity of fully suspended biological cells. Biophys. J. 105, 1767–1777. doi:10.1016/j.bpj.2013.08.040Kie?ling, T.R., Stange, R., K?s, J.A., Fritsch, A.W., 2013. Thermorheology of living cells—impact of temperature variations on cell mechanics. New J. Phys. 15, 045026. doi:10.1088/1367-2630/15/4/045026Kie?ling, T.R., Herrera, M., Nnetu, K.D., Balzer, E.M., Girvan, M., Fritsch, A.W., Martin, S.S., K?s, J.A., Losert, W., 2013. Analysis of multiple physical parameters for mechanical phenotyping of living cells. Eur. Biophys. J. 42, 383–394. doi:10.1007/s00249-013-0888-yPaschke, S., Weidner, A.F., Paust, T., Marti, O., Beil, M., Ben-Chetrit, E., 2013. Technical advance: Inhibition of neutrophil chemotaxis by colchicine is modulated through viscoelastic properties of subcellular compartments. J. Leukoc. Biol. 94, 1091–1096. doi:10.1189/jlb.1012510Chalut, K.J., H?pfler, M., Lautenschl?ger, F., Boyde, L., Chan, C.J., Ekpenyong, A., Martinez-Arias, A., Guck, J., 2012. Chromatin decondensation and nuclear softening accompany Nanog downregulation in embryonic stem cells. Biophys. J. 103, 2060–2070. doi:10.1016/j.bpj.2012.10.015Matthews, H.K., Delabre, U., Rohn, J.L., Guck, J., Kunda, P., Baum, B., 2012. Changes in Ect2 localization couple actomyosin-dependent cell shape changes to mitotic progression. Dev. Cell 23, 371–383. doi:10.1016/j.devcel.2012.06.003Mauritz, J.M.A., Esposito, A., Tiffert, T., Skepper, J.N., Warley, A., Yoon, Y.-Z., Cicuta, P., Lew, V.L., Guck, J.R., Kaminski, C.F., 2010. Biophotonic techniques for the study of malaria-infected red blood cells. Med. Biol. Eng. Comput. 48, 1055–1063. doi:10.1007/s11517-010-0668-0Rusciano, G., 2010. Experimental analysis of Hb oxy–deoxy transition in single optically stretched red blood cells. Phys. Med. 26, 233–239. doi:10.1016/j.ejmp.2010.02.001
AGING PROCESSES
Schulze, C., Wetzel, F., Kueper, T., Malsen, A., Muhr, G., Jaspers, S., Blatt, T., Wittern, K.-P., Wenck, H., K?s, J.A., 2010. Stiffening of Human Skin Fibroblasts with Age. Biophys. J. 99, 2434–2442. doi:10.1016/j.bpj.2010.08.026
VESICLES
Delabre, U., Feld, K., Crespo, E., Whyte, G., Sykes, C., Seifert, U., Guck, J., 2015. Deformation of phospholipid vesicles in an optical stretcher. Soft Matter. doi:10.1039/C5SM00562KSolmaz, M.E., Sankhagowit, S., Biswas, R., Mejia, C.A., Povinelli, M.L., Malmstadt, N., 2013. Optical stretching as a tool to investigate the mechanical properties of lipid bilayers. Rsc Adv. 3, 16632–16638. doi:10.1039/c3ra42510j Solmaz, M.E., Biswas, R., Sankhagowit, S., Thompson, J.R., Mejia, C.A., Malmstadt, N., Povinelli, M.L., 2012. Optical stretching of giant unilamellar vesicles with an integrated dual-beam optical trap. Biomed. Opt. Express 3, 2419–2427. doi:10.1364/BOE.3.002419
TECHNICAL ADVANCES
Grosser, S., Fritsch, A.W., Kie?ling, T.R., Stange, R., K?s, J.A., 2015. The lensing effect of trapped particles in a dual-beam optical trap. Opt. Express 23, 5221–5235. doi:10.1364/OE.23.005221Bellini, N., Bragheri, F., Cristiani, I., Guck, J., Osellame, R., Whyte, G., 2012. Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher. Biomed. Opt. Express 3, 2658–2668. doi:10.1364/BOE.3.002658 Bellini, N., Vishnubhatla, K.C., Bragheri, F., Ferrara, L., Minzioni, P., Ramponi, R., Cristiani, I., Osellame, R., 2010. Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells. Opt. Express 18, 4679–4688. doi:10.1364/OE.18.004679中國代理服務(wù)商:北京思睿維科技有限公司 馬金龍 18601970048
德國原裝UV150能量計 UV-INT150能量儀 德國UV150紫外線能量計
( UV-Integrator150能量計 產(chǎn)地:德國原裝UV150能量計)
德國UV150紫外線能量計是用于測量曝光裝置的UV能量的一種儀器,UV150測量儀的主感器在測量儀的背面,測量范圍為250~410納米,測量時可直接顯示于UV能量計正面的顯示屏上讀出(單位:毫焦耳/平方厘米),該UV能量計的電源為3.6伏特的鋰電池,該電池由于使用了特別的能源節(jié)省線路,該電池可持續(xù)大約10000小時。
德國UV150能量計 技術(shù)數(shù)據(jù):
尺寸:直徑90mm 高12mm
重量:約150g 適用設(shè)備:UV紫外線干燥機(jī)、曝光機(jī)
測量范圍:0-5000mW/cm2
能量顯示:LCD 0-999999mj/cm2
電源: 鋰電池3.6V UV
測量范圍: 250-410nm(光譜圖波長)
耗電量: 約10000小時(Lithiwn鋰電池)
工作溫度(℃): 0~70℃ 本UV能量計在輸送帶上耐溫110℃不超過10秒
德國原裝UV-INT150紫外線能量計!德國原廠UV150能量計!
UV-150能量計使用/操作
a. 打開ON開關(guān),則LCD(顯示屏)是顯示為零。
b. 將UV能量計放置于曝光UV燈源附近,以其背面對準(zhǔn)燈源(UV能量計的能量感受器在背面).
c. 直到UV能量計的顯示屏上有測量顯示,例如800毫焦耳/平方厘米。(800mj/cm2)
d. 將顯示屏的值記錄或作為品質(zhì)控制與實驗參數(shù),關(guān)掉UV能量計開關(guān)(OFF)。
1.它的最大測量范圍為 350 µm(0.014 in)(-200 µm 至 +150 µm)(-0.008 in 至+0.006 in)。
詳細(xì)介紹
德國馬爾原裝進(jìn)口
德國馬爾便攜式粗糙度儀/MarSurf PS1
MarSurf PS1粗糙度儀的技術(shù)參數(shù):
MarSurf PS1.粗糙度儀套件介紹 MarSurf PS1為一完整的套件設(shè)計,配套的掛包設(shè)計,使您可以隨時隨地攜帶自己的表面糙度測量儀器.快速可靠的現(xiàn)場測量使您在生產(chǎn)過程或來貨檢測中得到所需的質(zhì)量要求. PS1粗糙度儀套件包含 *MarSurf Ps1基本單元 *驅(qū)動器單元 *1個符合標(biāo)準(zhǔn)設(shè)計規(guī)定的標(biāo)準(zhǔn)傳感器 *內(nèi)置電池 *保護(hù)套設(shè)計的集成粗糙度標(biāo)準(zhǔn) *高度調(diào)節(jié)附件 *傳感器保護(hù)裝置 *充電器/電源適配器 *操作說明 *帶有肩帶和手提包 *USB連接電纜線 |
23060CA軸承23060CA軸承23060CA軸承23060CA軸承 調(diào)心滾子軸承具有兩列滾子,主要承受徑一載荷,同時也能承受任一方向的軸向載荷。有高的徑向載荷能力,特別適用于重載或振動載荷下工作,但不能承受純軸向載荷。該類軸承外圈滾道是球面形,故其調(diào)心性能良好,能補(bǔ)償同軸度誤差。
調(diào)心滾子軸承有兩列對稱型球面滾子,外圈有一條共用的球面滾道,內(nèi)圈有兩條與軸承軸線傾斜一角度的滾道,具有良好的調(diào)心性能,當(dāng)軸受力彎曲或安裝不同心時軸承仍可正常使用,調(diào)心性隨軸承尺寸系列不同而異,一般所允許的調(diào)心角度為1~2.5度 ,該類型軸承的負(fù)荷能力較大,除能承受徑向負(fù)荷外軸承還能承受雙向作用的軸向負(fù)荷,具有較好的抗沖擊能力,一般來說調(diào)心滾子軸承所允許的工作轉(zhuǎn)速較低。
主要適用的保持架:沖壓鋼板保持架(后綴E)、玻璃纖維增強(qiáng)型聚酰胺66保持架(后綴TVPB)、機(jī)加工黃銅實體保持架(后綴M)、振動場合沖壓鋼板保持架(后綴JPA) 主要用途:造紙機(jī)械、減速裝置、鐵路車輛車軸、軋鋼機(jī)齒輪箱座、軋鋼機(jī)輥道子、破碎機(jī)、振動篩、印刷機(jī)械、木工機(jī)械、各類產(chǎn)業(yè)用減速機(jī)、立式帶座調(diào)心軸承。
望遠(yuǎn)鏡特賣:德國蔡司望遠(yuǎn)鏡ZEISS征服者系列8×20BT*
商品名稱: 8×20BT*蔡司望遠(yuǎn)鏡蔡司編號:CLassiC Compact 8×20BT*蔡司望遠(yuǎn)鏡 522033 商品分類: 德國蔡司望遠(yuǎn)鏡(ZEISS雙筒望遠(yuǎn)鏡)產(chǎn)地:原裝德國放大倍數(shù):8物鏡直徑:20mm1000米之視野:115m出光孔:2.5mm 微光系數(shù):12.6 最近聚焦:3米 重量:180 克 高度(眼罩拉出時):102mm寬度(目鏡間距離為65mm時):93mm防水、防霧 尺寸 L102*W93*H34mm
望遠(yuǎn)鏡特賣:德國蔡司望遠(yuǎn)鏡ZEISS征服者系列8×20BT*
商品名稱: 8×20BT*蔡司望遠(yuǎn)鏡蔡司編號:CLassiC Compact 8×20BT*蔡司望遠(yuǎn)鏡 522033 商品分類: 德國蔡司望遠(yuǎn)鏡(ZEISS雙筒望遠(yuǎn)鏡)產(chǎn)地:原裝德國放大倍數(shù):8
調(diào)焦和屈光調(diào)節(jié)或許用一只手 就可完成。 | 獨(dú)創(chuàng)性的Z形折疊,可使望遠(yuǎn) 鏡處于最小的攜帶尺寸。 | 總在您的手邊:經(jīng)典便攜 式望遠(yuǎn)鏡可放進(jìn)任何口袋 |
2866718 QUINT-PS/1AC/12DC/15 菲尼克斯電源2866721 QUINT-PS/1AC/12DC/20 菲尼克斯電源QUINT POWER電源——采用SFB技術(shù),具有最高的系統(tǒng)有效性新一代QUINT POWER緊湊型通用電源確保了系統(tǒng)的最高有效性。 采用SFB技術(shù) (選擇性熔斷技術(shù)),可在12ms內(nèi)發(fā)出6倍于額定電流的電流 ,從而可靠、快速地觸發(fā)標(biāo)準(zhǔn)斷路器。 2866747 QUINT-PS/1AC/24DC/3.5 菲尼克斯電源2866750 QUINT-PS/1AC/24DC/5 菲尼克斯電源2866763 QUINT-PS/1AC/24DC/10 菲尼克斯電源 24V DC/10 A DIN導(dǎo)軌安裝式電源,初級開關(guān)模式,單相。 SFB技術(shù)(選擇性熔斷技術(shù))可以快速、可靠地觸發(fā)標(biāo)準(zhǔn)電源斷路器。 2866776 QUINT-PS/1AC/24DC/20 菲尼克斯電源2866789 QUINT-PS/1AC/24DC/40 菲尼克斯電源24V DC/40 A DIN導(dǎo)軌安裝式電源,初級開關(guān)模式,單相。 SFB技術(shù)(選擇性熔斷技術(shù))可以快速、可靠地觸發(fā)標(biāo)準(zhǔn)電源斷路器。 2866679 QUINT-PS/1AC/48DC/5 菲尼克斯電源2866682 QUINT-PS/1AC/48DC/10 菲尼克斯電源2866734 QUINT-PS/3AC/24DC/5 菲尼克斯電源2866705 QUINT-PS/3AC/24DC/10 菲尼克斯電源24V DC/10A DIN導(dǎo)軌安裝式電源,初級開關(guān)模式,3相。 SFB技術(shù)(選擇性熔斷技術(shù))現(xiàn)在還可以快速、可靠地觸發(fā)標(biāo)準(zhǔn)電源斷路器。 2866792 QUINT-PS/3AC/24DC/20 菲尼克斯電源2866802 QUINT-PS/3AC/24DC/40 菲尼克斯電源2320827 QUINT-PS/3AC/48DC/20 菲尼克斯電源POWER BOOST功率裕度最高達(dá)100%,確保復(fù)雜負(fù)載的可靠啟動。因此,在復(fù)雜的全球網(wǎng)絡(luò)中也可以確保高度操作可靠性。 即使在可能出現(xiàn)靜態(tài)壓降、瞬態(tài)電壓故障或缺相故障的場合中,MINI POWER電源都能保證正常工作。大容量電容確保滿載時干線緩沖時間超過20ms。堅持產(chǎn)品的寬域輸入的特性使其可全球通用。2866226 QUINT-DC-UPS/24DC/10 菲尼克斯電源2866239 QUINT-DC-UPS/24DC/20 菲尼克斯電源2866242 QUINT-DC-UPS/24DC/40 菲尼克斯電源2866365 QUINT-BAT/24DC/12AH 菲尼克斯電源2866213 QUINT-BUFFER/24DC/20 菲尼克斯24V DC/20A緩沖模塊QUINT BUFFER是免維護(hù)的電容緩沖模塊,可以在短期的輸入中斷情況下進(jìn)行供電。 系統(tǒng)也可在不穩(wěn)定網(wǎng)絡(luò)或長時間發(fā)生故障的區(qū)域中運(yùn)行,并在所有相關(guān)處理數(shù)據(jù)保存后斷開。 20A時緩沖時間為200ms,1A時為4s。緩沖模塊也可作為儲能設(shè)備,用于驅(qū)動峰值負(fù)載和觸發(fā)保險絲。 有源開關(guān)輸出和控制燈用于功能監(jiān)視。 根據(jù)集成的二極管,負(fù)載可分為緩沖負(fù)荷和非緩沖負(fù)荷。 因此,緩沖時間長,防止負(fù)載受到內(nèi)部網(wǎng)絡(luò)故障影響。2866268 TRIO-PS/1AC/24DC/2.5 菲尼克斯電源2866310 TRIO-PS/1AC/24DC/5 菲尼克斯電源2866323 TRIO-PS/1AC/24DC/10 菲尼克斯電源2866381 TRIO-PS/1AC/24DC/20 菲尼克斯電源TRIO POWER是帶基本功能的DIN導(dǎo)軌安裝式電源。具有5 V DC、12V DC、24V DC和48V DC輸出電壓,60 W或960 W單相和三相輸出,特別適用于機(jī)械工程中的批量生產(chǎn)。寬域輸入和多項國際認(rèn)證使電源可在全球范圍內(nèi)使用。2866459 TRIO-PS/3AC/24DC/10 菲尼克斯電源2866394 TRIO-PS/3AC/24DC/20 菲尼克斯電源2866404 TRIO-PS/3AC/24DC/40 菲尼克斯電源2938714 MINI-PS-100-240AC/5DC/3 菲尼克斯電源MINI POWER是超薄型電源裝置,結(jié)構(gòu)厚度僅為22.5mm、45mm和67.5mm。除了輸出電流為1.3A、2A和4A的24V型產(chǎn)品,還提供5V/3A、±15V/1A、10V...15V/2A和8A的特殊產(chǎn)品。POWER BOOST功率裕度最高達(dá)100%,確保復(fù)雜負(fù)載的可靠啟動。2938743 MINI-PS-100-240AC/2X15DC/1菲尼克斯電源2938730 MINI-PS-100-240AC/24DC/2菲尼克斯電源2868648 STEP-PS/1AC/24DC/1.75 緊湊型電源2868664 STEP-PS/1AC/24DC/4.2 緊湊型電源2868570 STEP-PS/1AC/12DC/3 緊湊型電源